THE CHINESE UNIVERSITY OF HONG KONG
DEPARTMENT OF MATHEMATICS

MMATS5220 Complex Analysis and its Applications 2016-2017

Suggested Solution to mid-term

1 Let g(2) = f(z) — 1. Since f is analytic on |z| < R, ¢ is also analytic on |z| < R. By maximum
principle, |g(z)| attains its maximum at some point zg in the boundary. As a result, we have

9(z) < g(z0) < 1 for all |z| < R. By triangle inequality, for |z| < R, we have
() =l9(z) +1] =1 —=g(2)| =1 —|g(20)| >1-1=0

Hence f(z) # 0 for |z| < R.
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2 Since f(z) is an entire function, it has a Talyor’s series expansion f(z) = E apz", where
k=0

As a result, we have

<9 Mr™  2nM
mr = —
— rk+1 rkfn

o0 n
Hence f(z) = Z a2’ = Z a,z" must be a polynomial of degree at most n.
k=0 k=0

3 (a) Note that 2% 4 62 + 5 = (22 + 1)(2? 4 5). By triangle inequality, for |z| = R > v/5, we have
|2t 4622+ 5| =22+ 1) (22 +5) > (RP—1)(R*—5)and [z + 1| < |2| +1=R+1

Hence
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(b) Since | +iv/5| = v/5 > 2, inside the contour |z| = 2 the integrand is not analytic only at the
point z = +i. By deformation of path, we can find € > 0 small enough such that
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By Cauchy’s Integral formula, we have
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4 When 14 z* = —r for some 7 > 0, we have 24 = —r — 1 = (r + 1)e'™. Hence z = (r 4 1)T¢i(5+%")
for K =10,1,2,3. As a result, the maximum domain of definition is given by
; 31 5 7
C\{re|r>1,0 = 2, Zﬂ-, Zﬂ- or Iﬂ-
1 > 1 €Z+%
5 By Laurent series expansion, we have e*t: = Z anz", where a, = — ——dz. In
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where in the last equality we use the facts that sine and cosine functions are odd and even respec-

tively. This gives the desired result.

6 Let L be the length of the contour C. Given z € ), define r

= mingec |z — w| to be the

distance between the point z and the contour C. Then for any Az with |Az| < r/2, we have

|s — (z + Az)| > |s — z| — |Az| > r/2. Note that
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Since f(s) is a continuous function, M = max,cq f(s) exists. From
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This gives the desired result.
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